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Abstract

Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally

nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a

parametrically excited flexible beam. For the latter, theoretical predictions are supported by experimental observations,

providing good agreement for a wide range of excitation conditions. The main effect of strong multi-HFE is to change the

effective or apparent stiffness in a manner similar to that of mono-HFE, provided the HFE frequencies are well separated

and non-resonant. Then the change in effective stiffness is proportional to the sum of squared excitation velocities, and the

corresponding changes in equilibria, equilibrium stability, and natural frequencies can be computed as for the mono-HFE

case. When there are two or more close-excitation frequencies, an additional contribution of slowly oscillating stiffness

appears. This may cause strong parametric resonance at conditions that might not appear obvious, i.e. when the difference

in two HFE frequencies is near twice an effective system natural frequency, which due to the HFE itself is shifted away

from the natural frequency without HFE. Also, it is shown that strong multi-HFE can stabilize otherwise unstable

equilibria, but generally this requires the frequencies to be well separated; thus, continuous broadband and random HFE

does not have a uniquely stabilizing effect paralleling that of mono-HFE, or multi-HFE with non-close frequencies. The

general results may be used to investigate or utilize general effects, or as a shortcut to calculate effective properties for

specific systems, or to calculate averaged equations of motion that may be much faster to simulate numerically.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The paper shows how effects of strong high-frequency excitation (HFE) having multiple frequencies (multi-
HFE) can be conveniently analyzed, and concludes that most results for mono-HFE readily extend to the
multi-HFE case. To illustrate basic principles, a simple example is first given (pendulum on a two-frequency
oscillating support). Then a generalized nonlinear model is considered, which covers a broad range of
applications. Finally, to illustrate an application of the general theory, a structural example (base-excited
elastic string) is analyzed and tested experimentally. The theoretical results have been presented in a
conference paper [1], along with preliminary experimental tests of qualitative features only. This present paper
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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repeats the theoretical developments for completeness, and adds new experimental results providing good
quantitative agreement for the effects of concern.

Strong HFE can change the effective properties of elastic structures in a manner that may not be obvious, or
may be overlooked or misinterpreted when using pure numerical simulation or laboratory experiments. Even a
zero-mean small-amplitude HFE may change structural features that may be essential for structural operation
and safety, such as effective stiffness, natural frequencies, equilibria, equilibrium stability, and bifurcation
paths, as has been known for many years [2–6]. Much has been learnt in recent years on such effects—for
specific systems and for quite general classes of linear and nonlinear mathematical models—and well-proven
methods exist for analyzing them (e.g., Refs. [7–13]). In most studies the HFE is assumed to be a stationary
harmonic mono-frequency function of time. However, in applications multi-HFE is not uncommon—either
with a few frequencies (e.g., structures connected to multiple imbalanced rotors), with many discrete
frequencies (e.g., higher harmonics of non-harmonic time-functions), or with a continuous spectrum of high
frequencies (HFs) (e.g., structures connected to rocket or jet engines).

There are many studies of various effects of multi-frequency excitation, of which in particular the possibility
of combination resonances for nonlinear systems is important, and thoroughly treated by Nayfeh and
coworkers in e.g. Refs. [14,15]. Also, Nayfeh and Nayfeh [16] analyzes the response of a single-degree-of-
freedom system with cubic nonlinearity to slowly modulated HFE, effectively corresponding to a three-
frequency excitation with close frequencies. In these studies the multi-frequency excitation is not supposed to
be strong and of high frequency, and thus effects such as apparent stiffening, of concern in the present study,
do not show up.

There seems to be rather few studies dealing with effects of strong multi-HFE: Chelomei [17] considered the
effect of multi-HFE for a general class of systems, focusing on its effect on the stability of equilibria of linear
systems. Bogdanoff and Citron [18] studied linear systems with multi-HFE, and showed that a pendulum on a
vibrating support can be stabilized in the inverted position by random multi-HFE, provided the frequencies of
the HFE are not close. Hemp and Sethna [19] contributed a thorough, mathematically oriented investigation
of general nonlinear dynamical systems in the Hamiltonian form, with particular focus on effects of
simultaneous fast and slow parametric excitation. Kovaleva [20] examined the stability of discrete dynamical
systems in a general Hamiltonian form and showed, generally and by physical examples, that multi-HFE
having random and quasi-periodic components can be used to generate new, stable equilibria. These studies
[17–20] do not include consideration to the influence of resonance, which is important for the analysis of
continuous elastic structures.

The analysis of continuous elastic structures with HFE introduces special problems. This is because
asymptotic analysis of HF-excited systems usually assumes the excitation frequencies are far beyond the linear
natural frequencies of the system, leading to approximate expressions for the fast components of motion that
ignores any influence of possible resonances. With HF-excited continuous elastic structures, as e.g. the beams,
columns, and spinning discs investigated in Refs. [21–26], this assumption is questionable, since the modal
density is typically so high that resonances are affecting the response in most of the relevant frequency range.
Thus care must be taken to restrict the frequency range of application to non-resonant regimes, or the
influence of resonance must explicitly be taken into account, as in Ref. [26] for a beam system. This present
work incorporates the general consideration of resonant influence (but not exact or sharp resonance), in a
manner that adds only marginally to computational burden and complexity.

The general class of systems covered by this work extends [12] in two respects: first the type of HFE under
consideration is extended from mono-frequency with a short period, to generally multi-frequency with any
period (including infinite, corresponding to quasi-periodic HFE). Secondly, consideration of weakly resonant
effects is directly incorporated, which means that the multi-HFE frequencies do not need to be much larger
than the linear resonances of the system. This makes the results directly applicable also to discretized models
of continuous elastic systems.

Next we present an example to illustrate, in a simple setting, various effects that can occur with multi-HFE.
Then a very general class of systems is considered, and correspondingly general results are derived using the
method of direct separation of motions [7]. Finally, the general results are employed to predict how the
apparent stiffness of an elastic string changes in response to multi-HFE, and the predictions are tested against
laboratory experiments.
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2. Example I: Illustrating the main effects of multi-HFE

Consider a pendulum in gravity g (Fig. 1), whose support vibrates vertically and harmonically in time ~t, at
multiple frequencies ~Oj being much higher than the natural frequency o0 ¼

ffiffiffiffiffiffiffi
g=l

p
, with corresponding

amplitudes Ajl much smaller than the pendulum length l. The pendulum swing y(t) is governed by the non-
dimensional equation of motion:

€yþ 2b_yþ ð1þ €qðtÞÞ sin y ¼ 0; qðtÞ ¼
Xm

j¼1

Aj sin ðOj tþ ajÞ,

Aj51; Ojb1; OjAj ¼ Oð1Þ; b51, ð1Þ

where time and frequencies have been normalized by o0, i.e., t ¼ o0 ~t and Oj ¼ ~Oj=o0, and overdots denote
derivatives with respect to t. The definition of q and the last two assumptions in Eq. (1) implies that
€q ¼ OðO2

j AjÞ ¼ OðOjÞb1, and thus the excitation term is assumed to be ‘‘stronger’’ than the stiffness term.
The system (1) belongs to a general class of discrete dynamical systems to be analyzed in Section 3. This

present section aims at illustrating the effects of concern in a simple physical setting, so here we bypass all
intermediate calculations and simply present the final outcome of applying the general results of Section 3: The
pendulum motions y are approximately—to order O�1, where O ¼ m�1

Pm
j¼1Oj is the average high excitation

frequency—given by

yðtÞ ¼ zðtÞ þ O�1jðt;OtÞ; O�151, (2)

where z and j are of magnitude order unity. Here the first term z(t) holds the slow or average component of y,
which is governed by

€zþ 2b_zþ 1þ O2
Xm

i;j¼1

s2ijðtÞAiAj cos z

 !
sin z ¼ 0, (3)

with dij denoting Kronecker’s delta:

s2ijðtÞ ¼

OiOj

2O2
dij for jOi � Ojjb1; i; j ¼ 1; . . . ;m;

1
2
cos ððOi � OjÞtþ ai � ajÞ for jOi � OjjpOð1Þ;

8><
>: (4)

and the initial conditions z(0) and _zð0Þ are determined by

zð0Þ � sin zð0Þ
Xm

j¼1

Aj sin ðajÞ ¼ yð0Þ; _zð0Þ ¼ _y0 þ sin zð0Þ
Xm

j¼1

AjOj cos ðajÞ. (5)

The second term O�1j in Eq. (2) is a small overlay of HF-oscillations:

O�1jðt; tÞ ¼ � sin z
Xm

j¼1

Aj sin ðOj tþ ajÞ þOðO�2Þ. (6)

The splitting in Eq. (2) of motions into slow components z and small but fast components j would follow as a
result of using, e.g., averaging or multiple scales perturbation analysis, or it can be considered an assumption
to be checked a posteriori. The relevance of this assumption can be understood physically, by considering how
Fig. 1. Pendulum with a support that vibrates at multiple high frequencies.
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HF inputs are filtered through the specific system: The unexcited part of Eq. (1) has the function of low-pass
filtering the displacement input (here q(t)), so that any displacement input at a frequency substantially higher
than the linear natural frequency (here O(1)) will only produce a small or even vanishing displacement output
at that frequency. The only way a small-amplitude HF input in Eq. (1) can produce a large HF output would
be by resonance, which is precluded here by the assumption Ob1. The fast components of velocity and
acceleration (and thus force) are not small, however; as Eq. (2) implies directly, they are O(1) and OðOÞb1,
respectively.

Of primary interest here is Eq. (3), for the slow pendulum motions z, while the fast but small motions O�1j
are usually interesting only by their effect on z. The main effects of multi-HFE depend on whether two or
more of the excitation frequencies Oj are close, or if they are all well-separated; we next consider each of these
cases.
2.1. Case: Multi-HFE with non-close frequencies

When all the excitation frequencies Oj are high and well-separated, jOi � Ojjb1, the functions sij
2 are given

by the upper expression in Eq. (4), which inserted into Eq. (3) gives

€zþ 2b_zþ ð1þ v2 cos zÞ sin z ¼ 0, (7)

where the constant v2 expresses the intensity of the HFE, which is proportional to the sum of squared
excitation velocities:

v2 ¼
1

2

Xm

j¼1

ðOjAjÞ
2. (8)

Eq. (7), governing the slow component z of y, is similar to Eq. (1) for the full pendulum motions y, though
with the non-autonomous excitation terms replaced by an averaged effect of these. Also, Eq. (7) is identical to
the averaged equation for the case of mono-HFE [11,13], where m ¼ 1 and v2 ¼ (OA)2/2. Thus the presence of
multiple non-close frequencies is accounted for solely by the definition (8) of the excitation intensity.

As appears when letting €z ¼ _z ¼ 0 in Eq. (7), there are at least two equilibria for the slow pendulum
motions: z ¼ 0 and z ¼ p, corresponding to y ¼ 0 (down-pointing pendulum) and y ¼ p (up-pointing
pendulum). To study motions near these, we linearize Eq. (7) near each

€zþ 2b_zþ o2
0z ¼ 0; for z � 0, (9)

€zþ 2b_zþ o2
pðz� pÞ ¼ 0; for z � p, (10)

where the linear stiffness coefficients are

o2
0 ¼ v2 þ 1; o2

p ¼ v2 � 1. (11)

The linear stiffness coefficient o0
2 for Eq. (9) increases with the HFE intensity v2, and is always positive;

hence, the equilibrium z ¼ 0 is always stable to small disturbances. Also, as v is increased, the (non-
dimensional) frequency o0 of small oscillations near z ¼ 0 increases from unity to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2
p

, so that the
pendulum oscillates faster about its down-pointing equilibrium in the presence of HFE.

In Eq. (10) the linear stiffness coefficient o2
p also increases with the HFE intensity v2. When v2o1 the

stiffness coefficient is negative, so that the up-pointing equilibrium is unstable, whereas if v241 the stiffness is
positive and the pendulum is stable in the up-pointing position (as reported in numerous studies since [2,3]). In
the latter case small oscillations near z ¼ p occur at frequency op ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 1
p

, which increases from zero as the
HFE intensity is increased beyond the critical value v2 ¼ 1.

In addition to the equilibria at z ¼ 0 and z ¼ p, when v241 two new equilibria emerge at
z ¼7arc cos(�v�2), symmetrically about the vertical axis of gravity, and moving smoothly from z ¼ p
towards p7p/2 as v2 is increased from 1 to infinity. These equilibria are always unstable, and act as potential
barriers between the equilibria at z ¼ 0 and z ¼ p, which are both stable when v241.
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Fig. 2. Damped pendulum oscillations y(t) (upper time series) towards the inverted position y ¼ p, which is stabilized by small-amplitude

support motions q(t) (lower time series) at two non-close, high frequencies, as obtained by numerical simulation of the equation of motion

(1). Parameters: b ¼ 0.05, O1 ¼ 20, O2 ¼ 40, A1 ¼ 0.05, A2 ¼ 0.03, a1 ¼ a2 ¼ 0, y(0) ¼ p, _yð0Þ ¼ 0:05.
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Thus, the HFE causes several changes in the effective properties of the pendulum system: new equilibria are
created, the effective natural frequencies are changed, and the stability of existing equilibria is changed. All
these effects are typical for HF-excited systems, and originate from a change in effective stiffness.

To illustrate a quantitative application of the above results, Fig. 2 shows a time series obtained by numerical
simulation (using the MATLAB-function ode45) of the original system (1) with two-frequency HFE, with
parameters as given in the figure legend. The pendulum is initially positioned at y ¼ p, and at t ¼ 0 given a
small velocity disturbance _yð0Þ. The simulated time series shows damped slow oscillations towards the inverted
equilibrium y ¼ p, with an average period of T ¼ 13.39, and a small HF-overlay of the magnitude order of the
HFE amplitudes. With the present parameters Eq. (8) gives v2 ¼ 1.2241, so that the equilibrium z ¼ p should
be stable to small disturbances (while if only one of the two excitations were applied then v2o1, and z ¼ p
would be unstable). Furthermore, small oscillations about the stable equilibrium should occur at angular
frequency op ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 1
p

¼ 0:4690, corresponding to a period of T ¼ 2p/0.4690 ¼ 13.40 thus agreeing rather
accurately with the simulation result T ¼ 13.39. The agreement will decrease as the assumption ceases to be
fulfilled, i.e. as the excitation frequencies become lower and closer, and the HFE amplitude becomes larger.

It appears that for non-close high frequencies the slow effects of multi-HFE do not differ from the case of
mono-frequency excitation, if just the excitation intensity is calculated as a sum of squares of the intensities at
each frequency, cf. Eq. (8).
2.2. Case: Multi-HFE with close frequencies

When two or more of the high excitation frequencies are close, i.e. O(1) or smaller, the functions sij
2 are

given by the lower expression in Eq. (4), which inserted into Eq. (3) gives

€zþ 2b_zþ ð1þ ðv2 þ pðtÞ cos zÞ sin z ¼ 0, (12)

where v2 is still given by Eq. (8), while

pðtÞ ¼
Xm�1
i¼1

Xm

j¼iþ1

O2AiAj cos ððOi � OjÞtþ ai � ajÞ: (13)

Comparing to the similar expression (7) for the case of non-close excitation frequencies, we see that the
averaged effect of the presence of close frequencies corresponds to a parametric excitation, oscillating at the
small difference frequencies Oi�Oj.
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The interaction between the change in effective stiffness (the v2-term) and parametric excitation may create
slow effects that may not be obvious when considering only Eq. (1) for the full motions: As is well-known [14],
primary parametric resonance may occur when a parametric excitation frequency is near twice the linear
natural frequency of a system. For the present system this means any |Oi�Oj| coming near twice the
effective natural frequency, and this natural frequency may be shifted away (by the v2-term) from the
corresponding natural frequency of the unexcited pendulum.

To study motions near the static equilibria z ¼ 0 and z ¼ p we linearize (12) near each of them and obtain

€zþ 2b_zþ ðo2
0 þ pðtÞÞz ¼ 0 for z � 0, (14)

€zþ 2b_zþ ðo2
p þ pðtÞÞðz� pÞ ¼ 0 for z � p, (15)

where the linear stiffness coefficients o0
2 and o2

p are still given by Eq. (11).
With Eq. (14) being a damped Hill-equation, the down-pointing equilibrium z ¼ 0 of the pendulum may be

destabilized by parametric resonance when |Oi�Oj|E2o/k, k ¼ 1, 2, y, and the corresponding excitation
amplitude O2AiAj is beyond a critical value. The nearness to resonance and critical amplitude for this to occur
can be calculated using standard results for the Hill-equation as given in many texts (e.g., Ref. [14]), as can the
resulting nonlinear response under resonant conditions (in Ref. [11] this is done for a system similar to
Eq. (12)). Though, when using results from perturbation analysis, care should be taken to check the accuracy,
since the excitation amplitudes O2AiAj are O(1) , and thus not small compared to the stiffness coefficient o0

2.
To illustrate the effect of parametric resonance at a shifted frequency, Fig. 3 shows a time series obtained by

numerical simulation of the original system (1) with two-frequency HFE, with parameters as given in the
figure legend, and initially transients discarded. The resulting stationary oscillations of the pendulum (upper
time series) have a slow period T ¼ 4.833, and is resonant in character with a large-amplitude (O(1)) compared
to the small-amplitude (O(O�1)) input. Considering Eq. (14) and the remarks below, this could be expected,
since with the present parameters the frequency difference |O1�O2| ¼ 2.6 is close to twice the effective natural

frequency 2o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 1
p

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2ðO1A1Þ
2
þ 1

2ðO2A2Þ
2

q
¼ 2:831. The pendulum should then perform

parametrically resonant oscillations at half the difference in excitation frequencies, i.e. (O2�O1)/2 ¼ 1.3,
corresponding to a period of T ¼ 2p/1.3 ¼ 4.833, which agrees with the simulated time series. Considering just
the original equation of motion (1), one might not think that large responses could occur under the above
conditions, while this appears more readily from the averaged system (12).

As for the up-pointing equilibrium z ¼ p of Eq. (15), it cannot—as for the case of non-close frequencies—be
stabilized simply by ensuring o2

p40, since parametric resonances at |Oi�Oj|E2op/k, k ¼ 1, 2, y may
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Fig. 3. Large stationary pendulum motions y(t) (upper time series) induced by small-amplitude support motions q(t) (lower time series) at

two close high frequencies, as obtained by numerical simulation of the equation of motion (1). Parameters: b ¼ 0.05, O1 ¼ 18.7, O2 ¼ 21.3,

A1 ¼ A2 ¼ 0.05, a1 ¼ a2 ¼ 0, y(0) ¼ 0.01, _yð0Þ ¼ 0.
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destabilize z ¼ p when an HFE amplitude O2AiAj exceeds a critical value. With increased values of O2AiAj, the
width of the resonant regions increase (cf. the classical Strutt diagram [14]), so that z ¼ p is stable for narrower
ranges of parameter values. Similarly, for the case o2

po0 (where z ¼ p is always unstable with non-close HFE),
a narrow range of parameter values rendering z ¼ p stable do exist (cf. the only stable region in the fourth
quadrant of the Strutt diagram: a narrow ‘‘tongue’’), but for typical parameter values of the assumed
magnitude order the equilibrium z ¼ p is unstable.

Hence, stabilization of the inverted pendulum position requires either strong mono-HFE or strong multi-
HFE with frequency separations being larger in magnitude order than the unforced natural frequency, or—if
there are close excitation frequencies—some special combination of parameter values. With continuous
broadband or random HFE, the requirement of frequency separation cannot be fulfilled: there will always be
parametrically resonant (and thus destabilizing) frequency differences, at least for small damping. These
conclusions agree with Refs. [18,19].

Observations similar to some of those above were derived and reported by Fidlin in Section 6.3 of Ref. [10],
on illustrating the effect of a slowly modulated parametric HFE for a pendulum; Note here that a slowly
modulated HF signal is equivalent to a pair of HF signals being close in frequency, e.g., sin ððOþ DOÞtÞ þ
sin ððO� DOÞtÞ ¼ 2 cos ðDOtÞ sin ðOtÞ; where 2DO5O is the frequency spacing, and DO the modulation
frequency.

3. Results for a general class of systems

With the above specific example in mind to ease interpretation, we next consider a quite general class of
discrete dynamical systems with multi-HFE, covering a broad variety of applications. The purpose of the
analysis is to determine the slow or averaged components of motions, which will be those apparent to lowpass-
filtering observers such as measuring instruments and human senses. The analysis can be performed using
different perturbation techniques, considering O�1 as a small parameter where O is a characteristic large
excitation frequency. Standard averaging can be used as in Ref. [10], or multiple time scaling methods as in
Refs. [22,24,27], or the method of direct separation of motions (MDSM) as in a large number of studies (e.g.,
see Refs. [7–13,28] and references cited there). In Refs. [10,13] these techniques are briefly compared, and
shown to give identical or similar results, though with the MDSM being computationally more convenient.

3.1. The general system

Consider discrete mechanical systems modeled by

Mðu; tÞ€uþ O2Kuþ sðu; _u; tÞ þ
Xm

j¼1

ðhjðu; _u; tÞ þ Of jðu; tÞÞ
q2xjðt; tÞ

qt2
¼ 0,

u ¼ uðtÞ; uð0Þ ¼ u0; _u0ð0Þ ¼ _u0; t ¼ Ot; Ob1, ð16Þ

which covers numerous applications, see e.g. Refs. [11,13]. It is an extension of the one analyzed in Ref. [12],
and compared to the (in other respects more general) system considered in Section 4.3 of Ref. [7] it holds a
term O2Ku that allows analysis of resonant influence. Here u(t)ADCRn describes positional state with
corresponding velocities _u ¼ du=dt, M is a positive definite mass matrix, O2K is a constant matrix describing
linear stiffness or restoring force, s holds the ‘slow’ forces, and hj, fj, and xj jointly describe the multi-HFE of
characteristic frequency Ob1, i.e. the ‘fast’ forces. The sum of fast forces, along with its first and second
derivative with respect to t, is supposed to have zero fast-time average (any non-zero average being included in
s or Ku), and to be T-periodic and square-integrable in t, where TA]T�; N[, T� ¼ O(2p/O), with the fast-time
average of a function g(t, t) defined by

gðt; tÞ
� �

t �
1

T

Z T

0

gðt; tÞdt, (17)

where the integration is performed with the slow time t considered fixed. All functions in Eq. (16) are generally
nonlinear and of magnitude order unity O(1) or lower, xj are bounded on [0; T], and fj and M are bounded on
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the subset D with continuous first derivatives with respect to u (whereas hj and s need not to be continuous).
Terms multiplied by the large parameter O are considered ‘strong’.

We note for illustration that the equation of motion (1) for the pendulum in multi-HFE belongs to
the class (16), with n ¼ 1; u ¼ y; M ¼ 1; K ¼ 0, sðy; _y; tÞ ¼ 2b_yþ sin y, hj ¼ 0, f jðy; tÞ ¼ OAj sin y, xjðt; tÞ ¼
sin ððOj=OÞtþ ajÞ, t ¼ Ot, and O ¼ m�1

Pm
j¼1Ojb1.

The decision of whether to consider the linear stiffness O2K strong depends on whether the HFE could
possibly excite linear resonances in the system. If the excitation frequencies are not well-separated from the
linear natural frequencies, then the linear stiffness must be considered strong and should be put in the O2K

term; if not, it should be represented by the s-term. There would be no formal difficulties, for the following
calculations, in letting the stiffness term be generally nonlinear and dependent of slow time, i.e. Ku ¼ k(u,t);
however, since in applications a possible nonlinear part of the restoring force is typically much weaker than
the linear contribution, the nonlinear part could be represented by the s-term in Eq. (16).

The notions of ‘slow’ and ‘fast’ here refer to two distinct characteristic time scales or frequencies
characterizing motions of the system: there is a time scale t and a characteristic frequency o describing
motions of the system when xj ¼ 0 for all j, e.g., one can take o as the largest natural frequency of the
linearized, unexcited system. It is assumed that time t has been normalized such that o ¼ O(1). Then there is a
fast time scale t ¼ Ot, which describes fluctuations imposed by the external loading of characteristic HF
Obo; the time variation of such loads are given by xj. The ‘fast’ loading can contain terms oscillating at many
different frequencies, but some of them are high, and O describe their order magnitude, e.g., their average. For
cases where Obo is not satisfied, the linear stiffness is ‘strong’ and should be represented by the O2K-term as
explained above.

For the general system analyzed in Ref. [12], T ¼ 2p, and the strong term O2K was not included. For the
extension (16), the fast excitations are assumed to be generally T-periodic or quasi-periodic (T-N) and to
be square-integrable in t (to justify Fourier expansion), and the strong stiffness term O2K extends the
applicability to discrete models that arise from the mode shape expansion of continuous models of elastic
structures, where the influence of resonances cannot be ignored. Many of the following results can be found
also in Refs. [11,12], but is given here with special emphasis to the analysis of various stiffening effects of
multi-HFE, taking also resonant influences into account.

3.2. An approximate set of equations governing the slow or average motions

Using the method of direct separation of motions [7] (see also Refs. [9–11]), one can separate solutions u(t)
to Eq. (16) into slow and fast components as follows:

u ¼ uðt; tÞ ¼ zðtÞ þ O�1uðt; tÞ, (18)

where z(t) is the slow or average motion, and O�1u is a rapidly oscillating overlay that has small amplitude, is
T-periodic in the fast time t ¼ Ot, and zero fast-time averages:

u
� �

t ¼ u0
� �

t ¼ u00
� �

t ¼ 0, (19)

where primes denote differentiation with respect to t. Inserting into Eq. (16) and solving to first order of
accuracy for u, one finds (see Refs. [11,12] for further details):

uðt; tÞ ¼ ûðt; tÞ þOðO�1Þ, (20)

where the first approximation û for the fast motions u is a particular solution of:

Mðz; tÞû00 þ Kû ¼ �
Xm

j¼1

f jðz; tÞx
00
j ðt; tÞ. (21)

Averaging Eq. (16) with Eqs. (18)–(20) inserted then gives, to first order of accuracy, a set of equations for the
slow or averaged motions z:

Mðz; tÞ€zþ O2Kzþ sðz; _z; tÞ þ vðz; _z; tÞ ¼ 0, (22)
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which is similar to Eq. (16), but with the HFE terms replaced by vðz; _z; tÞ, the so-called vibrational forces [7]:

vðz; _z; tÞ ¼ sðz; _zþ û0; tÞ � sðz; _z; tÞ
� �

t þ
Xm

j¼1

hjðz; _zþ û0; tÞx00j ðt; tÞ
D E

t

þ
Xm

j¼1

rf jðz; tÞ ûx00j ðt; tÞ
D E

t
þ rmðz; t; ûÞ
� �

t, ð23Þ

where overdots denote differentiation with respect to t, and r denotes positional derivatives:

rf jðu; tÞ �
qf j

qu
¼

qf j

quð1Þ
� � �

qf j

quðnÞ

" #
, (24)

rmðiÞðu; t;uÞ � ðu
00Þ

T
rMðiÞu where rMðiÞðu; tÞ �

qMðiÞ
qu
¼

qMðiÞ
quð1Þ

� � �
qMðiÞ
quðnÞ

" #
, (25)

where a subscript in parenthesis denotes a vector element or matrix column. The vibrational forces v

correspond to real physical forces having the same effect as the HFE, on the average. To an observer or
measuring instrument filtering out small-amplitude HF vibrations, the response u from Eq. (16) is identical
(within the order of approximation) to the response z from Eq. (22).

The initial conditions needed to solve Eq. (22) for z is obtained from the original initial conditions in
Eq. (16), which turns into:

zð0Þ ¼ u0 � O�1ûð0; 0Þ; _zð0Þ ¼ _u0 � û0ð0; 0Þ � O�1 _̂uð0; 0Þ, (26)

which completes the separation of the full motions u into slow and fast components z and u.
Since in Eq. (22) any explicit dependence on the fast time t has been averaged out, this equation for z is far

easier to solve than the original equation (16) for u. This holds not only for analytical solutions but also for
numerical simulation where much larger time steps can be used, since there is no need to keep track of the
rapid oscillations at frequency order of magnitude O.

Based on the averaged system (22), a number of general results regarding HFE effects can be derived,
without any need to actually solve the equations; see Ref. [12] for K ¼ 0, and Ref. [26] for a case corresponding
to K6¼0. In Ref. [12] three main effects were identified and discussed: (1) Stiffening, which is an apparent
change in the linear stiffness associated with an equilibrium, along with derived quantities such as stability and
natural frequencies; (2) biasing, by which a system is biased towards a particular state, static or dynamic,
which does not exist or is unstable in the absence of the HFE; and (3) smoothening, referring to a tendency for
discontinuities to be effectively ‘‘smeared out’’ by HFE. Though these results are valid also for multi-
frequency excitation (m41 in Eq. (16)), no attempt was made in Ref. [12] to consider particular effects
associated with this, and all specific examples were given in terms of mono-frequency harmonic excitation.
Below, we focus on the effects of multi-HFE for an important subclass of Eq. (16).

3.3. Results for an important subclass

To illustrate the influence of multi-HFE for a simpler subclass of systems, still covering a great many
applications, we assume from now a unitary mass matrix M ¼ I (since this could be obtained anyway by
multiplying with M

�1), that s is linear in the velocities _u, and that the fast forces are independent of _u. We also
assume O2K ¼ O2x2, where x2 is a diagonal matrix holding the squared linear undamped natural frequencies
of the system, normalized by O2. Note that the matrix O2x2 should only be given in case its components are
comparable in magnitude to the squared excitation frequencies of the HFE (i.e. |x2| ¼ O(1)), otherwise the
corresponding forces Ku or accelerations x2u should be included in the s-term. Then Eq. (16) becomes

€uþ O2x2uþ sðu; _u; tÞ þ
Xm

j¼1

Of jðu; tÞ
q2xjðt; tÞ

qt2
¼ 0; t ¼ Ot; Ob1. (27)
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The splitting of motions into slow and fast components is still given by Eq. (18) and the fast motions û given
by Eqs. (20) and (21), while the averaged system (22) and (23) for the slow motions z becomes:

€zþ O2x2zþ sðz; _z; tÞ þ
Xm

j¼1

rf jðz; tÞ ûx00j ðt; tÞ
D E

t
¼ 0. (28)

In Eq. (28) the HF-terms of the original system (27) is replaced by the average effect of these, which takes the
form of parametrical stiffening [11,12]. Thus the main characteristic of the subclass (27) of systems (16) is that
the smoothening effects of HFE and certain forms of biasing are not covered.

Next we assume the HFE-function xj is time-harmonic in t with high frequency Oj and (slowly varying or
constant) phase aj(t), i.e. xjðt; tÞ ¼ ~xjðt; tÞ, where

~xjðt; tÞ ¼ sin
Oj

O
tþ ajðtÞ

� �
, (29)

where the definition t ¼ Ot of fast time should be recalled, and the characteristic high frequency O is taken as
the average excitation frequency:

O ¼
1

m

Xm

j¼1

Ojb1. (30)

The assumption xjðt; tÞ ¼ ~xjðt; tÞ is not very restrictive: Since any HFE function xj is already assumed to be
periodic and square-integrable in t (cf. Section 3.1), it can be Fourier-expanded into a sum of functions
harmonic in t. Then Eq. (21) becomes, substituting ~xj for xj and using Eq. (29) in calculating x00j :

û00 þ x2û ¼
Xm

j¼1

f jðz; tÞ ðOj=OÞ
2 ~xjðt; tÞ; (31)

with particular solution:

û ¼ �
Xm

j¼1

D�1j f jðz; tÞ~xjðt; tÞ, (32)

where Dj is the jth n� n diagonal resonance matrix corresponding to the HFE at frequency Oj:

Dj ¼ I� ðO=OjÞ
2x2 (33)

where it should be recalled that O2x2 holds the squared natural frequencies. For excitation frequencies Oj

much higher than the highest natural frequency, the second term in Eq. (33) is negligible so that Dj
�1-I. But

as an excitation frequency Oj approaches any of the system natural frequencies, then |Dj
�1|-N, and resonant

oscillations of the fast motions û will occur. Since jûj ¼ Oð1Þ has been assumed, the following results are thus
only valid when the HFE is not sharply resonant to the HF natural frequencies.

Inserting Eqs. (32) and (29) into Eq. (28), and using the definition (17), integration by parts, and the
T-periodicity of xj and x0j one obtains

€zþ O2x2zþ sðz; _z; tÞ þ
Xm

i;j¼1

s2ijðtÞrf iðz; tÞD
�1
j f jðz; tÞ ¼ 0, (34)

where sij
2 holds the slowly varying mean-square derivatives of the HFE terms:

s2ijðtÞ ¼ ~x
0

iðt; tÞ~x
0

jðt; tÞ
D E

t
. (35)

When x2
¼ 0 (i.e. the HFE frequencies are much higher than the natural frequencies), then the averaged

equation (34) with Eq. (35) holds not just when xj ¼
~xj as given by Eq. (29), but for any set of zero-mean T-

periodic and square-integrable functions xi; for that case only the mean-square derivatives count. The xj could
even be random signals, in which case T-N and s2x0j would be the covariance matrix of the HF-derivatives,
and indeed results agreeing with Eqs. (34) and (35) have been obtained for multi-HFE with a randomly
varying phase [18,20].
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The calculation of mean-square derivatives sij
2 depends on whether some of the frequencies Oj are close.

Inserting Eq. (29) into Eq. (35) and employing Eq. (17) with T-N gives

s2ijðtÞ ¼

OiOj

2O2
dij ; for jOi � Ojjb1; i; j ¼ 1; . . . ;m;

1

2
cos ððOi � OjÞtþ ai � ajÞ; for jOi � OjjpOð1Þ;

8>><
>>: (36)

where dij is the Kronecker delta, and the first case (non-close frequencies) is calculated by directly inserting Eq.
(29) into Eq. (35) and using Eq. (17), while the second case (any two close frequencies) is calculated by
inserting into Eq. (35) an equivalent form of Eq. (29), written in terms of the small frequency difference DOj:

~xjðt; tÞ ¼ sin ðtþ DOj tþ ajÞ; DOj ¼ Oj � O; jDOjjpOð1Þ. (37)

As appears, for non-close frequencies the mean-square derivatives can be considered constants, while for any
two close frequencies Oi and Oj, the corresponding mean-square derivative sij

2 is slowly oscillating in time.

3.4. Changes in effective properties of quasi-static equilibria

Suppose the averaged system (34) has a quasi-static equilibrium at z ¼ ~z, i.e.:

O2x2 ~zþ sð~z; 0; tÞ þ
Xm

i;j¼1

s2ijðtÞrf ið~z; tÞD
�1
j f jð~z; tÞ ¼ 0, (38)

at which the slowly varying derivatives w.r.t. state variables are:

KsðtÞ ¼
qs
qu

����
ðu;_uÞ¼ð~z;0Þ

; CðtÞ ¼
qs
q_u

����
ðu;_uÞ¼ð~z;0Þ

, (39)

Kf
ijðtÞ ¼

qðrf iD
�1
j f jÞ

qu

�����
u¼~z

¼ ðrf iD
�1
j rf j þ fTj �r

2f iÞju¼~z, (40)

where the last term is an m�m matrix whose kth column is given by

ðfTj � r
2f iÞðkÞ ¼ fTj D

�1
j ðr

2f iÞðkÞ, (41)

and (r2fi)(k) is the Hessian matrix corresponding to fi(k):

ðr2f iÞðkÞ ¼

q2f iðkÞ

qu2
ð1Þ

� � �
q2f iðkÞ

quð1ÞquðmÞ

..

. . .
. ..

.

q2f iðkÞ

quðmÞquð1Þ
� � �

q2f iðkÞ

qu2
ðmÞ

2
666666664

3
777777775
. (42)

Then Eq. (34) can be Taylor-expanded at z ¼ ~z and rearranged into:

€zþ O2x2zþ CðtÞ_zþ ðKsðtÞ þ DKfðtÞÞ ðz� ~zÞ þOðjz� ~zj2Þ þOðj_zj2Þ ¼ 0, (43)

where

DKfðtÞ ¼
Xm

i;j¼1

s2ijðtÞK
f
ijðtÞ, (44)
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which governs motions near the quasi-equilibrium ~z. Here O2x2+Ks is the corresponding stiffness matrix for
the system without HFE, and DKf is an apparent or effective change in linear stiffness caused by the average
effect of the HFE. Note that all excitation terms (those with C, K) in Eq. (43) are slowly varying, and purely
parametric; slow external excitations (if present in the terms of sðu; _u; tÞ being independent of u and _u) are
reflected only indirectly, through slowly changing equilibrium solutions ~zðtÞ to Eq. (38).

As appears from Eq. (44) and the definition of Kf in Eq. (40), for systems (27) there are two terms
contributing to stiffening by HFE. The first of the two summed terms in Eq. (40) exists only if there is at least
one fj, which is linearizable with a non-zero gradient at zero. Since this term disappears for functions that are
essentially nonlinear, we term its contribution linearly induced parametrical stiffness (Ref. [12]). If /x0ix0jS ¼ 0
for j 6¼k, as is often the case in applications, then this contribution is positive definite if all the HFE frequencies
are above the highest natural frequency of oscillations, since then x2

¼ 0, which gives D ¼ I, so that
rfjDj

�1
rfj| ¼ |rfj| |Dj

�1||rfj|40 for i ¼ j. However, if some of the HFE frequencies are within the range of
natural frequencies, then |Dj

�1| may be negative, and the stiffness contribution is negative, i.e. the HFE makes
the system appear less stiff than without HFE. (Indeed this was observed experimentally in Ref. [26], where a
piano string in mono-HFE showed clear drops in stiffness just below resonances.)

The second term in Eq. (40) exists only when fj has both a constant and a quadratic part when Taylor-
expanded near the equilibrium; we therefore term it nonlinearly induced parametrical stiffness, since only
nonlinear functions fj can contribute to it. Terms of order three and higher of the Taylor-expansion of fj does
not contribute to stiffness (to the level of approximation employed), since their second derivatives vanish at
the equilibrium.

A change in effective stiffness implies changes in derived properties, as described next.
3.4.1. Change of natural frequency for oscillations near an equilibrium

The natural frequencies associated with small oscillations near an equilibrium ~z of the averaged system (34)
are determined by the eigenvalues l ¼ lr, r ¼ 1, y, 2m, which are roots of the characteristic polynomial
corresponding to the linear part of Eq. (43):

jl2 þ lCðtÞ þ lðO2x2 þ KsðtÞ þ DKfðtÞÞj ¼ 0, (45)

where the time-variation of the matrices are supposed to be quasi-static. The natural frequencies (also quasi-
static) are then given by |Im(lr)|; They will generally differ from the values obtained when there is no HFE, i.e.
when DKf

¼ 0 in Eq. (45).
3.4.2. Shift in equilibrium position

Suppose Eq. (27) has an equilibrium at u ¼ ~u when there is no HFE, i.e.

x2 ~uþ sð~u; 0; tÞ ¼ 0. (46)

Then ~u may be different from the equilibrium(s) z ¼ ~z for the averaged system under HFE. The condition for
an equilibrium to be unchanged under HFE is obtained by letting ~z ¼ ~u in Eq. (38) and inserting Eq. (46),
which gives

Xm

i;j¼1

s2ijðtÞrf ið~u; tÞf jð~u; tÞ ¼ 0 ðwhen ~u ¼ ~zÞ; (47)

from which it appears that a necessary condition for a shift in equilibrium to occur is that at least one of the
functions fj should be non-zero with a nonzero gradient at the equilibrium.

A small shift D~u in equilibrium position can be determined by Taylor-expanding Eq. (38) for ~z ¼ ~uþ D~u and
solving for D~u; this gives

D~u ¼ �ðO2x2 þ KsðtÞ þ DKfðtÞÞ�1
Xm

i;j¼1

s2ijðtÞrf ið~u; tÞD
�1
j f jð~u; tÞ þOðj~z� ~uj2Þ. (48)
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If two or more of the HFE frequencies are close, then according to Eq. (36) sij
2 will oscillate at the slow

frequency difference, and so will the equilibrium in Eq. (48).

3.4.3. Change of equilibrium stability

An equilibrium ~z of the averaged system (34) is stable to small disturbances only if Re(lr)o0 for all r, with
lr being the solutions of Eq. (45). Even if the HFE does not change the position of an equilibrium, i.e. ~z ¼ ~u,
the additional term DKf in Eq. (45) caused by the HFE, may imply changing real parts of the eigenvalues lr,
and thus a stable equilibrium may turn unstable or vice versa in the presence of HFE.

3.4.4. Creation of new equilibria

If solutions ~z to Eq. (38) exist that are not equal to or close to ~u, we consider them as being ‘new’, i.e. they
are created by the HFE. The stability of such equilibria can be calculated as described above.

4. Example II: Elastic string with multi-HFE

This example illustrates how the above general results can be used to analyze multi-HFE effects
for a specific continuous, elastic system. The system is the horizontally clamped piano string in Fig. 4,
whose base at the left end is vibrated horizontally at high frequency and small amplitude by an
electromagnetic shaker. As appears from the figure, the string lifts in gravity in response to the HFE; this is a
clear sign of the change in effective stiffness. In Ref. [26] theoretical predictions of the string lift were derived,
and shown to agree with experimental results with good accuracy for a broad range of mono-HFE frequencies
and amplitudes. Below we reconsider this system, but with multi-HFE. First a few experimental observations
with a simple setup are presented, to illustrate qualitative features of string lift. Then follows theoretical
predictions of string lift, derived from the general results of Section 3. Finally these predictions are tested
experimentally, using a setup that allows accurate measurement of string lift and accurate control of the input
multi-HFE.

4.1. Initial experimental observations with a simple setup

The initial observations were made for the string in Fig. 4, using a two-frequency harmonic
HF-signal whose displacement amplitude A and frequency f ¼ O/2p are indexed 1 and 2 below, while in all
cases the phase a was zero. The excitation frequency f was controlled by software, and the excitation
amplitudes A were calculated as a/(2pf)2, with a being the acceleration amplitude measured by an
Fig. 4. Piano string (0.5� 500mm2) excited by horizontal vibrations at the base. Two images overlaid: one with gravity as the only

excitation (lower string image) and one with the base vibrating horizontally at 62Hz and 3.3mm displacement, 500m/s2 acceleration

amplitude (upper image). The string tip is seen to lift about 2 cm. Camera shutter speed was 1/50 s, so the slightly blurred image of the

upper string reflects positions traced during a little more than a full vibration cycle. (Adapted from Ref. [26].)
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accelerometer at the shaker base. Lift of the string end was determined visually, by inspecting the string end
against a non-magnetic ruler fixed immediately behind the string. The latter measurement is inaccurate, with
reading errors in the range 10–25% due to the fast and slow movements of the string, and parallax, but will
suffice for a first test of the theoretical predictions.

4.1.1. Experiment A: Two frequency-excitation at non-close HFs

With signal 1 (f1 ¼ 62Hz, a1 ¼ 332m/s2, A1 ¼ 2.2mm), the string end lifted off u1E6mm from the
unexcited static equilibrium in gravity, this state being reached after slow oscillations of the string at its
fundamental natural frequency had decayed, while small-amplitude oscillations corresponding to the HFE
remained. With signal 2 (f2 ¼ 138Hz, a2 ¼ 298m/s2, A2 ¼ 0.40mm), the corresponding lift of the string end
was u2E2mm. Removing either signal, the string returned to its previous, unexcited static equilibrium.
Adding signals 1 and 2, the string end lifted off u1+2E8.5mm, with beating occurring only for the small-
amplitude oscillations corresponding to the HFE. We note that u1+u2Eu1+2, indicating that the equilibrium
shift due to stiffening could be approximately additive for each frequency component; indeed this is confirmed
below. Also, the observation that no slow oscillations in the lifted equilibrium position remained, after initial
transients had decayed, agrees with the general theoretical prediction (48) for multi-HFE with non-close
frequencies.

4.1.2. Experiment B: Two frequency-excitation at close HFs

With signal 1 equal to signal 2 (f1 ¼ f2 ¼ 138Hz, a1 ¼ a2 ¼ 200m/s2, A1 ¼ A2 ¼ 2.7mm), the string end
lifted off u1+2E4.5mm, which was twice as much as for signal 1 or 2 alone. However giving signal 2 a small
frequency shift of 0.5Hz (f2 ¼ 138.5Hz, a2 ¼ 200mm, A2 ¼ 2.6mm), the string started performing stationary
slow oscillations at about 0.5Hz, repeatingly tracing all positions between the static, unexcited equilibrium
u1+2E0mm, and the maximum lift u1+2E4.5mm. These observations again support the indication of a linear
additive effect, as well as the general prediction under (48) that multi-HFE with close frequencies induce
effective stiffness that oscillates at the small frequency difference of the close frequencies.

4.1.3. Experiment C: Band-limited HFE

Using broadband random excitation (center frequency f ¼ 100Hz, frequency span Df ¼ 50Hz, digitally
generated with frequency spacing 0.031Hz), it was not possible to detect an average raise of the string end
from its static equilibrium by the naked eye. At stronger excitation amplitudes, it started performing violent
vibrations, modulated by low-frequency oscillations with seemingly random components. A similar
observation was noted with narrowband excitation (f ¼ 62Hz, Df ¼ 3Hz). These observations further
support the theoretical prediction that (quasi-) stationary stiffening requires frequencies that are well
separated and not sharply resonant.

4.2. Theoretical model predictions

4.2.1. Mathematical model

The string is modeled as a viscously damped clamped–free Bernoulli–Euler beam (Fig. 5) of length l,
mass per unit length rA, and bending stiffness EI. The beam vibrates in a vertical plane with configuration
u(x, t) in response to external forces from gravity g, and time-harmonic multi-HFE base excitation with
HFs Oj, small displacement amplitudes Aj, and phases aj, j ¼ 1, y, m. The equation of motion and boundary
Fig. 5. Beam model of the base-excited piano string.
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conditions are [26]:

€uþ c _uþ o2
0l

4uxxxx � ððl � xÞuxÞx

Xm

j¼1

O2
j Aj sin ðOj tþ ajÞ ¼ �g,

o2
0 ¼

EI

rAl4
; O ¼

1

m

Xm

j¼1

Ojbo0; Aj5l,

uð0; tÞ ¼ uxð0; tÞ ¼ uxxðl; tÞ ¼ uxxxðl; tÞ ¼ 0, ð49Þ

where subscripts x denote partial derivatives with respect to x, o0 is a characteristic system frequency, and O a
characteristic excitation frequency.

As in Ref. [26] (where m ¼ 1) we use mode shape expansion for discretizing Eq. (49), i.e. let

uðx; tÞ ¼ uðtÞT/ðxÞ, (50)

where the n-vector u holding the modal coefficients ui(t) is the new dependent variable, and the n-vector /
holds the eigenfunctions fi(x) for a clamped–free beam [11]:

fiðxÞ ¼ cosh
lix

l

� �
� cos

lix

l

� �
�

cosh ðliÞ þ cos ðliÞ

sinh ðliÞ þ sin ðliÞ
sinh

lix

l

� �
� sin

lix

l

� �� �
, (51)

where li is a solution of the frequency equation cos(li cosh(li)+1 ¼ 0 (the first six approximations are
{1.87551041, 4.6940911, 7.8547574, 10.995541, 14.137168, 17.278760}; for iX6 the deviation from the
asymptotic value li-(2i�1)p/2 is less than 10�7). The corresponding natural frequencies are

oi ¼
li

l

� �2
ffiffiffiffiffiffiffi
EI

rA

s
¼ l2i o0. (52)

Next insert Eq. (50) into Eq. (49), multiply by fj, integrate over the beam length, employ integration by
parts, exploit the orthogonality properties of f, and obtain a set of n ordinary differential equations for the
modal coefficients u:

€uk þ c _uk þ o2
kuk þ

Xn

i¼1

gkiui

Xm

j¼1

O2
j Aj sin ðOj tþ ajÞ ¼ �bkg; k ¼ 1; n, (53)

where the modal constants g and b are given by

bk ¼ a�1k

Z l

0

fk dx; gki ¼ a�1k

Z l

0

ðl � xÞfkxfix dx where ak �

Z l

0

f2
k dx. (54)
4.2.2. Predictions of multi-HFE effects

In Ref. [26] the model (53) with m ¼ 1 was used to predict the stiffening effect of mono-HFE for the piano
string, using the method of direct separation of motions in a manner that specifically took into account the
effect of resonances. This proved necessary to obtain good agreement with experimental results. Here, instead,
we can use the general results of Section 3 directly, considering the influence of resonances taken into account
by the matrix O2x2.

The discretized beam model has the general form (27) with (29), with the following correspondences of
variables and parameters:

u ¼ fu1 . . . ung
T; O2x2 ¼ diagnðo

2Þ; sðu; _u; tÞ ¼ c_uþ gb; f jðu; tÞ ¼ �OAjcu, (55)

where O2x2 is a diagonal matrix holding the squared natural frequencies o2
i , the vector b holds bi, and the

matrix c holds gij, i, j ¼ 1,y, n. Then the fast component O�1û of the modal coefficients u is given by Eq. (32),
while the slow or averaged component z is given by Eq. (34), with mean-square derivatives sij

2 calculated by
Eq. (36).
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Focusing here on calculating string lift, which is an easily measurable characteristic of stiffness, we first use
Eqs. (50) and (18) to calculate motions of the string end:

uðl; tÞ ¼ uTðtÞ/ðlÞ ¼ zðtÞT/ðlÞ þ O�1uðt; tÞT/ðlÞ, (56)

where the slow and fast components z and O�1/ are governed by Eqs. (34) and (32), respectively, with Eqs.
(55) and (33) governed by

€zþ O2x2zþ c_zþ O2
Xm

i;j¼1

s2ijAiAjcD
�1
j cz ¼ �gb, (57)

and

O�1û ¼
Xm

j¼1

AjD
�1
j cz~xj, (58)

where Dj is the resonance matrix (33). The stationary equilibrium ~z for the slow motions z is calculated by
letting _z ¼ €z ¼ 0 in Eq. (57) and solving for z, which gives

~z ¼ �g O2x2 þ O2
Xm

i;j¼1

s2ijAiAjcD
�1
j c

 !�1
b. (59)

In the absence of HFE (i.e. all Ai ¼ 0) this gives ~z ¼ gðOx2Þ
�1, so that the time-averaged lift of the string end

becomes, using Eq. (56):

D ~uðlÞ ¼ ~uðl; tÞ � ~u0ðl; tÞ
� �

¼ ð~zjAia0 � ~zjAi¼0Þ
T/ðlÞ

¼ gbT ðO2x2Þ
�1
� O2x2 þ O2

Xm

i;j¼1

s2ijAiAjcD
�1
j c

 !�10
@

1
A/ðlÞ. ð60Þ

4.3. Case I: Non-close HFE frequencies

Inserting Eq. (36) into Eq. (60) gives, for the case of non-close HFE frequencies:

D ~uðlÞ ¼ gO�2bTððx2Þ
�1
� ðx2 þ Dx2Þ

�1
Þ/ðlÞ for jOi � Ojjb1, (61)

where O2Dx2 holds the apparent changes in squared natural frequencies due to the HFE:

O2Dx2 ¼
1

2

Xm

j¼1

ðOjAjÞ
2cD�1j c. (62)

With m ¼ 1, Eqs. (61) and (62) become identical to the expression derived under similar assumptions in Ref.
[26] for mono-HFE.

If the HFE is not resonant to the system, i.e. Dj is not close to being singular, then Dx2 (representing HFE-
generated change in stiffness) is small as compared to x2 (representing static structural stiffness), and it makes
sense to Taylor-expand (61) to first order:

D ~uðlÞ ¼ gbTðO2x2Þ
�2O2Dx2/ðlÞ for jOi � Ojjb1, (63)

where (O2x2)�2 ¼ diag(oi
�4). Thus, it appears from Eqs. (62) and (63), to the first order of approximation, the

stiffening effect and corresponding string lift with non-close multi-HFE is simply linear additive. The lift
resulting from a sum of non-close HFEs equals the sum of the lifts for each separate HFE. Also, when all of
the HFE frequencies Oj, j ¼ 1, m, are far from the resonances oi, i ¼ 1, n, then Dj-I and the stiffening effect
O2Dx2—and therefore the string lift D ~uðlÞ—becomes simply proportional to the sum of squared HFE
velocities

P
jðOjAjÞ

2. This agrees with the experimental observation for test A in Section 4.1.1.
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4.4. Case II: Some close HFE frequencies

Inserting Eq. (36) into Eq. (60) gives, when there are close HFE frequencies:

D ~uðlÞ ¼ gO�2bTððx2Þ
�1
� ðx2 þ Dx2 þQðtÞÞ�1Þ/ðlÞ for jOi � OjjpOð1Þ, (64)

QðtÞ ¼
1

2

Xm;jai

i;j¼1

cos ððOi � OjÞtþ ai � ajÞAiAjcD
�1
j c. (65)

Taylor-expanding again to first order gives, for a weak stiffening effect and responses that are not sharply
resonant:

D ~uðlÞ ¼ gbTðO2x2Þ
�2
ðO2Dx2 þ O2QðtÞÞ/ðlÞ for jOi � Ojjb1, (66)

Comparing to Eq. (63), it appears that for close frequencies, to first order of approximation, the string lifts off
to the position determined as for non-close frequencies, and on top of that slow oscillations occur at an
amplitude determined by the maximum of the function Q(t), which depends on the particular values of the
parameters in Eq. (65). This agrees qualitatively with the experimental observation for test B in Section 4.1.2.
However, the experimental observation that the slow oscillations is ‘y tracing all positions between the static,
unexcited equilibrium y and the maximum lifty’ may be particular to the parameters of that experiment,
since according to Eq. (66) with Eq. (65), the string end could even dip below its static equilibrium during each
period of the slow oscillations.

5. Quantitative experimental testing

5.1. Experimental setup

The setup is similar to the one used in Ref. [26], including the same piano string of length 550mm and
diameter 1mm (i.e. much stiffer than the one in Fig. 4), density 7819 kg/m and Young’s modulus 195GPa,
measured lowest natural frequencies {2.4, 14.6, 40.4, 79.1, 131.0, 195.6}Hz deviating less than 1% (though
3.9% for the lowest frequency) from Bernoulli–Euler theoretical values, and linear damping ratios less than
0.3% (though 4.5% for the lowest frequency).

The string is clamped and excited horizontally by a vibration shaker at one end, as in Fig. 4. The resulting
string base acceleration is measured by an accelerometer mounted at the shaker, and the time-varying string
tip lift is measured by an optical tracker with an accuracy better than 0.1mm. Measured signals are
conditioned and sampled (typically at 4 kHz) by a B&K PULSE front-end unit and analyzed using B&K
PULSE software. Details of the experimental setup and procedures are as described in Ref. [26], except that
for the present study the newest version of B&K PULSE front-end and software were used, that this was also
used for controlling the multi-frequency input to the vibration shaker, that average string lift was obtained
from the zero-frequency component of the FFT of the optical tracker signal, and that root-mean-square
accelerations at each input frequency was obtained from the FFT of the accelerometer signal.

5.2. Control parameters

A two-frequency excitation was used for the input horizontal displacement A(t) at the shake base, i.e. m ¼ 2
in the equations of Section 4.2, so that:

AðtÞ ¼ A1 sin ðO1tÞ þ A2 sin ðO2tÞ; O1aO2. (67)

The experimental setup allows measurements of the resulting acceleration a(t) at the shaker base, as well as the
root-mean-square accelerations at each input frequency ai,rms, i ¼ 1, 2 so that the corresponding shaker
displacements can be calculated as

Ai ¼
ffiffiffi
2
p

ai;rms

.
O2

i ; i ¼ 1; 2. (68)
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For the presentation of results, it is convenient to express the excitation in terms of an input acceleration

parameter arms, which is the total rms acceleration at the shaker base, and a continuous frequency mixing

parameter ZA[0; 1], which is zero (unity) when all the input energy is at frequency O1 (O2) so that
ða1;rms=armsÞ

2
¼ 1� Z and ða2;rms=armsÞ

2
¼ Z, i.e.:

arms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1;rms þ a2

2;rms

q
; Z ¼ ða2;rms=armsÞ

2. (69)

We also define a specific input energy parameter Ē ¼ 1=2
P

iðOiAiÞ
2; where OiAi is the velocity amplitude at

input frequency Oi, i.e., by Eqs. (68) and (69):

Ē ¼
a1;rms

O1

� �2

þ
a2;rms

O2

� �2

¼
1� Z

O2
1

þ
Z

O2
2

 !
a2
rms. (70)

5.3. Procedures

In comparing theoretical predictions with experimental measurements, we focus on the prediction of (quasi-)
stationary average string tip lift D ~uðlÞ, since this represents the change in effective stiffness of interest here.
Theoretical predictions for this are calculated using Eqs. (61) and (62) for non-close excitation frequencies,
and Eqs. (64) and (65) for close frequencies. Corresponding experimental values for given excitation
frequencies are obtained by (1) calibrating the optical tracker to give zero reading when the string is loaded
only by gravity, i.e. without HFE, (2) imposing HFE through the shaker base, (3) waiting for stationary
conditions to occur, (4) recording imposed acceleration levels at each excitation frequency from the FFT of the
shaker base acceleration signal, (5) recording corresponding average string tip lift from the zero frequency
component of the FFT of the optical tracker signal, (6) regularly removing the HFE to check if string tip lift
reading returns to zero (recalibrating and repeating measurement if not).

Predictions for the trivial HF overlay on average tip lift can readily be obtained from the second term in Eq.
(56), with û from Eq. (32) substituted for the fast motions u. However, this prediction is not tested separately,
because the fast string motions u are considered interesting only by their effect on the change in effective
stiffness, i.e. only their effect ‘‘on the average’’ on string lift need to be correctly predicted. (Still, in Ref. [26],
dealing with the mono-frequency case, excellent agreement between predicted and measured fast motions was
noted.)

5.4. Results

Fig. 6 shows examples of measured time series in the form of string tip lift ~uðl; tÞ � ~u0ðl; tÞ versus time at a
constant input acceleration level arms, along with measured and theoretically predicted averages (solid and
dashed horizontal lines), and with parameters as given in the legend. Figs. 6(a) and (b) are for mono-frequency
excitation at 61 and 110Hz, respectively, in both cases displaying averages lifting off from zero; this reflects
the stiffening effect of mono-frequency HFE as described already in Ref. [26]. The measured and predicted
averages are almost indistinguishable. For Fig. 6(c) the excitations of (a) and (b) have been added into a two-
frequency HFE, while keeping the same input rms-acceleration level. As appears, the string tip still lifts off to a
fixed value, in-between the values of case (a) and (b), and the multi-HFE is only apparent through the overlay
of two-frequency oscillations; the measured average is seen to agree with predictions (61) and (62) for the case
of non-close excitation frequencies. For Fig. 6(d) the highest of the two HFE frequencies in (c) has been
lowered to being only 0.5Hz from the lowest excitation frequency. The string tip then does not settle down to
a stationary average value, but lifts and drops at the slow rate of the difference frequency, still with an HF
overlay corresponding to the excitation frequencies. This is in full accordance with predictions (64) and (65)
for close frequencies, and the measured average still agrees with what is theoretically predicted.

Fig. 7 shows sets of input level responses, i.e. average string tip lifts versus (a) input acceleration arms and (b)
input energy Ē, for two-frequency horizontal base excitation with non-close and non-resonant frequencies (O1,
O2)/2p ¼ (60, 110)Hz, and for five different frequency mixings. In Fig. 7(a) the set of curves from pure 60Hz
excitation (Z ¼ 0), over increasing mixings with 110Hz excitation, to pure 110Hz excitation (Z ¼ 1) shows
decreasing lift with increased Z (reflecting that at a higher frequency the velocity amplitude and therefore
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Fig. 6. Measured string tip lift ~uðl; tÞ � ~u0ðl; tÞ versus time for the 1� 550mm2 horizontal string at input base acceleration arms ¼

300=
ffiffiffi
2
p

m=s2 and (a) mono-frequency excitation (Z ¼ 0) at O1/2p ¼ 61Hz; (b) mono-frequency excitation (Z ¼ 1) at O2/2p ¼ 110Hz; (c)

two-frequency excitation (Z ¼ 0.5) at non-close frequencies (O1, O2)/2p ¼ (61, 110)Hz; (d) two-frequency excitation (Z ¼ 0.5) at close

frequencies (O1, O2)/2p ¼ (61, 61.5)Hz. Curves: experimentally measured time series (stationary conditions); Solid horizontal line: times

series average; Dashed horizontal line: theoretically predicted average D ~uðlÞ by Eqs. (61) and (62). System parameters: L ¼ 0.55m,

E ¼ 195� 109 Pa, g ¼ 9.82m/s2, rA ¼ 6.1410� 10�3 kg/m, EI ¼ 9.5720� 10�3Nm2, rAc ¼ 8� 10�3 kg/m/s, n ¼ 6 modes.

Fig. 7. Average string tip lift D ~uðlÞ for the 1� 550mm2 horizontal string with two-frequency horizontal base excitation (O1, O2)/2p ¼ (60,

110)Hz, as a function of (a) input acceleration arms and (b) input energy Ē, for five different frequency mixings Z. Lines: theoretical
predictions by Eqs. (61) and (62); marker symbols: experimentally measured. System parameters as for Fig. 6.
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energy input must decrease to keep the acceleration level fixed), and also a nearly quadratic increase of string
tip lift with acceleration level (reflecting the quadratic term in Eq. (62)). It also appears that the experimentally
measured values (symbol markers) are in good agreement with the theoretical predictions. Fig. 7(b) shows the
same theoretical and experimental data as Fig. 7(a), but plotted instead with the specific input energy Ē as
the input level variable. As appears, all the data cluster around the same almost straight line. This reflects the
prediction stated under Eq. (63), that for non-close and non-resonant HFE, stiffening (and thus string lift)
grows simply with the sum of squared HFE velocities

P
iðOiAiÞ

2
¼ 2Ē, while the particular mixing of

excitation frequencies is less relevant.
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Fig. 8. Average string tip lift D ~uðlÞ for the 1� 550mm2 horizontal string with constant horizontal input acceleration arms ¼ 300=
ffiffiffi
2
p

m=s2,
constant second excitation frequency O2/2p ¼ 110Hz, and quasi-statically varied first excitation frequency O1/2p1A[0; 240] Hz. Lines:

theoretical predictions by Eqs. (61) and (62); thick line: Z ¼ 0.5 (i.e. two-frequency excitation with a1,rms ¼ a2,rms ¼ 150m/s2); thin line:

Z ¼ 0 (i.e. mono-frequency excitation with a1;rms ¼ 300=
ffiffiffi
2
p

m=s2, a2,rms ¼ 0); marker symbols: experimentally measured (with up-pointing

arrows indicating large resonant response). Horizontal arrow lines above the graph span theoretically predicted ranges of parametric

resonance. System parameters as for Fig. 6.
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Fig. 8 shows two frequency responses, i.e. average string lift versus input excitation frequency O1. The curve
in thin line is for mono-frequency HFE (a2,rms ¼ 0), while the one in thick line is for two-frequency excitation
with Z ¼ 0.5. In the later case, as O2 is kept constant at 110Hz, O1 is varied (quasi-statically) over the range
0–240Hz, keeping the total acceleration level at arms ¼ 300=

ffiffiffi
2
p

m=s2. The swept range includes the natural
frequencies at 40, 79, 131, and 196Hz, and thus tests the capability of the theoretical predictions to include
effects of resonance on stiffening. It should be emphasized that the figure does not show the amplitude of
string vibrations, as would a usual frequency response, but shows the average lift of the string tip (undergoing
HF oscillations) under stationary conditions. As appears, for both the mono- and the two-frequency case, the
string generally lifts off from zero (i.e., is stiffened) by the HFE, most pronounced just above the natural
frequencies. However, at excitation frequencies just below the natural frequencies, the string tip drops down

under zero, reflecting a negative stiffening effect at these frequencies, where the string appears more flexible
with than without HFE. The main effect of two-frequency excitation, as compared to the mono-frequency
case, appears to be a flattening of the non-resonant parts of the response curve. But this just reflects the fact
that in the two-frequency case some of the input energy goes to O2 leaving less for the sweep frequency O1;
ultimately, as Z-1 and all energy goes to O2, the frequency response will be all flat, taking on the constant
value of the string lift corresponding to the HFE at O2. As also appears, the experimentally measured values
(symbol markers) for both the mono- and the two-frequency case are in good agreement with the theoretical
predictions, even close to natural frequencies. At some excitation frequencies the string exhibits strongly
resonant behavior (up-pointing arrows in the Fig. 8). These frequencies are either very close to natural
frequencies of the string (curve spikes in the Fig. 8) or within or close to theoretically predicted frequency
ranges of parametric resonance (horizontal arrow lines above the Fig. 8); see Ref. [26] for more details on
parametric resonances for this string system.

The results presented in this section demonstrates how the effective stiffness for a flexible structure
is affected by mono- and two-frequency HFE, illustrates how to employ the general theoretical results of
Section 3 for predicting effective stiffening, and proves good agreement between theory and experimental
measurements for a rather wide range of excitation conditions.

6. Conclusions
�
 Strong parametrical HFE at multiple frequencies has a stiffening effect on mechanical systems, which is
similar to that of mono-frequency excitation, provided the excitation frequencies are well separated.

�
 For non-close and non-resonant excitation frequencies, the change in effective static stiffness is

proportional to the sum of squared excitation velocities, i.e. to the input energy level.
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�
 With two or more close excitation frequencies, there is an additional contribution of slowly oscillating
stiffness, having magnitude order similar to the change in static stiffness, and frequencies equal to the
differences in non-close frequencies.

�
 With close excitation frequencies, strong parametric resonance can occur at conditions that might not

appear obvious, that is when the difference in any two excitation frequencies comes near 2 ~o=k, where k is
an integer (with k ¼ 1 corresponding to primary parametric resonance), and ~o is an effective natural
frequency of the system, which due to the HFE is shifted away from the natural frequency o without HFE.

�
 Strong multi-frequency HFE can stabilize unstable quasi-static equilibria. Generally this holds only if the

frequencies are well separated, i.e. with differences much larger than the lowest natural frequencies of the
system. With two or more close high frequencies, the effect of HFE may be stabilizing or destabilizing,
depending on particular parameter values. Thus continuous broadband and random excitation does not
have a uniquely stabilizing effect paralleling that of mono-frequency HFE, or multi-frequency HFE with
non-close frequencies.

�
 The above conclusions were derived for a class of generally nonlinear systems subjected to strong multi-

frequency HFE of an arbitrary period, and illustrated for a simple pendulum system with a vibrating
support, and for a parametrically excited horizontal flexible beam in gravity. For the latter example,
comparison of theoretical predictions with experimental measurement for a wide range of excitation
conditions showed good agreement on all aspects of concern.

�
 The general results may be used to investigate or utilize general effects, or as a shortcut for calculating

effective properties for specific systems, or for calculating averaged equations of motion that may be much
faster to simulate numerically.
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